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A theoretical analysis is presented for fully developed convective heat transfer in two immiscible fluid
layers confined within parallel plate microchannels subject to combined effects of axial pressure gradi-
ents and imposed electrical fields. Assuming desperate zeta potentials at the interfaces thus formed,
closed-form expressions are derived for the velocity and temperature distributions under fully developed
conditions, with uniform wall heat flux boundary conditions. For the heat transfer analysis, the viscous
dissipation effects are neglected as compared to the Joule heating effects. Results are subsequently
obtained for different ranges of the ratios of various electrical properties of the two fluid layers and var-
ious relative strengths of the ratios of the electrical fields and the imposed pressure gradients. These
results demonstrate the effects of the applied electric fields and pressure gradients, presence of external
heat source or sink and interfacial positions on the temperature distributions in the two layers and the
corresponding Nusselt numbers.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Microfluidic transport plays an important role in several areas
of biotechnological, biomedical and biochemical process engineer-
ing and the cooling of micro-electronic devices. In many of these
applications, the fluid flow is effectively controlled by employing
pressure gradients, electrical fields, or their suitable combinations.
Amongst the various flow actuating mechanisms, flow augmenta-
tion and control through electroosmosis appears to be an attractive
proposition in microfluidic systems [1–3], because of non-mechan-
ical pumping and valveless operation, dispersion-free velocity pro-
file, and inherent compatibilities with the micro-electronic
circuitry.

The fundamental principle of electroosmosis [4] lies in the fact
that when a solid is in contact with an electrolyte, the chemical
state of the surface is generally altered, typically either by ioniza-
tion of covalently bound surface groups or by ion adsorption. As a
result, the surface inherits a charge while counterions are
released into the liquid. The magnitude of the surface charge de-
pends on the acidic or basic strengths of the surface groups and
on the pH of the solution [5]. Despite the overall liquid being
electrically neutral, an electrostatic force of attraction develops
between the surface charges and the oppositely charged ions
(counterions) in the liquid. Thus, a counterion concentration gra-
dient establishes within the liquid, with a higher concentration
near the solid surface and a lower concentration in the far-
ll rights reserved.

akraborty).
stream. On the other hand, the coion concentration near the sur-
face is lower than that in the bulk liquid far away from the same,
due to electrostatic repulsion. As a consequence, there is a net
abundance of counterions close to the surface, which effectively
balances the total charge of surface coions. Immediately next to
the charged surface, a layer of immobilized counterions is pres-
ent, which is known as the compact layer or the Stern layer or
the Helmholtz layer. From the compact layer to the electrically
neutral bulk liquid, the net charge density gradually reduces to
zero. The layer of mobile ions beyond the Stern layer is called
the Gouy–Chapman layer. These two layers are separated by a
shear plane. The potential at this shear plane is known as the zeta
potential (f). The region encompassing the Stern layer and the
Gouy–Chapman layer, over which the ionic charge density gradi-
ents are present, is also known as the electrical double layer
(EDL) The characteristic thickness of the EDL is known as the De-
bye length (k), which is the length from the shear plane over
which the EDL potential reduces to (1/e) of f. In presence of the
EDL potential and the consequent charge density field, if a voltage
is applied along the microchannel axis, fluid elements located
within the diffuse EDL move under the action of electrostatic
forces. Due to a cohesive nature of the hydrogen bonding in the
polar solvent molecules, the entire buffer solution is pulled, gen-
erating a net electrokinetic body force on the bulk fluid, which is
a combined function of the charge density distribution and the
imposed electrical field. Fluid flows actuated by this kind of body
forces are typically termed as electroosmotic flows, which form
the basis of many microfluidic devices and systems of contempo-
rary relevance.
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Nomenclature

Cp specific heat capacity
e electronic charge
E external electric field (axial)
h heat transfer coefficient
H distance between the two plates
k thermal conductivity
kb Boltzmann constant
Nu Nusselt number
p pressure
Q volume flow rate
T absolute temperature
u flow velocity
q0 0 heat flux per unit width
n1 ionic number concentration in the bulk solution
z valence of ion
a thermal diffusivity
/ electric potential

j Debye–Hückel parameter
e permittivity
f1 zeta potential at bottom wall
f2 zeta potential at interface from lower fluid
f3 zeta potential at interface from upper fluid
f4 zeta potential at top wall
l viscosity
q density
qe electric charge density
r electrical conductivity

Subscripts
1 lower fluid
2 upper fluid
w wall
b bulk mean
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A key factor that determines the success of electroosmotic
pumping through microchannels is the ability to develop suffi-
ciently high concentration of dissociated ions close to the fluid–so-
lid interface. However, some fluids, typically the poorly conductive
nonpolar ones, cannot form sufficient interfacial charge density
gradients to ensure electroosmotic pumping on application of the
external electric fields. Such fluids, however, may be electroosmot-
ically driven in an indirect manner, by forming an immiscible layer
with another conducting fluid, so that a transverse transport of ax-
ial momentum across the two layers can take place through vis-
cous action. An external pressure gradient may simultaneously
be imposed on the system to modulate the flow.

Several research investigations have been reported in the liter-
ature on the analysis of fluid flow in two immiscible fluid layers
confined in parallel plate microchannels, subject to either electro-
osmotic or pressure-driven fluidic actuation mechanisms, or their
suitable combinations [6–10]. Such configurations would ideally
be suited to constitute efficient microchannel heat sinks as well,
since local thermo-fluidic control could be achieved by manipulat-
ing the geometrical and flow characteristics of the individual fluid
layers. Despite such potential benefits, however, a theoretical anal-
ysis of heat transfer in immiscible fluid layers subject to combined
electroosmotic and pressure-driven transport mechanisms is yet to
be reported in the literature.

Aim of the present work, accordingly, is to provide a detailed
analysis of fully developed convective heat transfer in two immis-
cible fluid layers confined within parallel plate microchannels
(Fig. 1), and subject to combined effects of axial pressure gradients
and imposed electrical fields. Assuming desperate zeta potentials
at the three interfaces thus formed, closed-form expressions are
derived for the velocity and temperature distributions under fully
developed conditions, with uniform wall heat flux boundary condi-
Fig. 1. Two immiscible fluid layers in a microchannel.
tions. Utilizing these expressions, the effects of the applied electric
fields and pressure gradients, viscosity ratios, thermal diffusivity
ratios and interfacial positions on the temperature distributions
in the two layers and the corresponding Nusselt numbers are dem-
onstrated in details.

2. Mathematical modeling

2.1. Description of the physical problem

Fig. 1 depicts a schematic view of the considered model of two
immiscible fluid layers of depth H1 and H2 in a parallel plate micro-
channel of total depth H. The two fluids are assumed to be of dis-
parate thermo-physical properties. The electrical conductivity of
the bottom fluid is considered to be higher than that of the fluid
constituting the upper layer. The fluid flow is taken to be actuated
by a combination of axial electric fields and pressure gradients, for
generalization.

For mathematical modelling of the physical problem, following
simplified assumptions are made:

(a) The fluid flow is steady, incompressible, Newtonian, and
laminar [11,12],

(b) the flow is fully developed,
(c) viscous dissipation effects are negligible as compared to the

Joule heating effects [13],
(d) the interface between the two immiscible fluids is planar,
(e) the fluid–fluid interface permits an accumulation of charges,

resulting in the possible development of a local electrical
potential,

(f) thermo-physical properties of the fluid are temperature-
invariant, over the ranges of temperature being
encountered,

(g) there is no overlapping of the EDLs, so that the Poisson–
Boltzmann theory of potential distribution holds [14–16].

2.2. Electrical potential distribution

Considering the system to be in equilibrium with no macro-
scopic advection/diffusion of ions, the solid surface to be micro-
scopically homogeneous and the applicability of far-stream
boundary conditions at the centreline of each conducting fluid
layer, the probability of finding an ion at a particular point within
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the EDL can estimated to be proportional to the Boltzmann factor,
e�ze/=kbT . For any binary fluid consisting of two kinds of ions of
equal and opposite charge z+and z�, the number of ions of each
type can be described by the Boltzmann distribution [4], given as
n� ¼ n1eze/=kbT and nþ ¼ n1e�ze/=kbT .This distribution of ionic con-
centration is considered to be valid when there is no axial gradient
of the ionic concentration within the microchannel and the flow
Peclet number is sufficiently small, which are considered to be
appropriate for the present study. The net charge density in a unit
volume of the fluid, in such cases, is given as

qe ¼ ðnþ � n�Þze ¼ �2n1ze sinhðze/=kbTÞ ð1Þ

A solution for the electroosmotic potential distribution can be read-
ily obtained by employing the Poisson–Boltzmann equation, which
is of the form [4]:

r2/ ¼ �qe

e
ð2Þ

With a one-dimensional distribution of the induced potential, Eq.
(2) assumes the following form:

d2/

dy2 ¼ �
qe

e
ð3Þ

Eqs. (1) and (3) can be combined together to yield

d2/

dy2 ¼
2n1ze

e
sinh

ze
kbT

/

� �
ð4Þ

With the Debye–Hückel linearization [4] approximation (i.e., sinh
(ze//kbT) is approximated as ze//kbT), which is a reasonably accu-
rate assumption for the cases in which |ze//kbT| < 1, Eq. (4) can
be re-written as

d2/

dy2 ¼
2n1ze

e
ze

kbT
/

� �
¼ j2/; say ð5Þ

where j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n1ðzeÞ2

ekbT

q
.Since in this model there are two fluid layers,

the respective governing equations for electrical potential distribu-
tion become

d2/1

dy2 ¼ j2
1/1 for � H1 6 y 6 0 ð6aÞ

d2/2

dy2 ¼ j2
2/2 for 0 6 y 6 H2 ð6bÞ

The solutions of the Eqs. (6a) and (6b) can be obtained as

/1 ¼ C1e�j1y þ C2ej1y for � H1 6 y 6 0 ð7aÞ

/2 ¼ C 01e�j2y þ C 02ej2y for 0 6 y 6 H2 ð7bÞ

The integration constants C1, C2, C01C02 can be calculated by using the
following boundary conditions:

ðiÞ at y ¼ H2; /2 ¼ f4; ðiiÞ at y ¼ 0; /2 ¼ f3;

iiiÞ at y ¼ 0; /1 ¼ f2; ðivÞ at y ¼ �H1;/1 ¼ f1ð ð8a-dÞ

These give the following induced potential distributions within the
two fluid layers:

/1 ¼
f2 sinhfj1ðyþ H1Þg � f1 sinhðj1yÞ

sinhðj1H1Þ
for � H1 6 y 6 0 ð9aÞ

/2 ¼
f4 sinhðj2yÞ � f3 sinhfj2ðy� H2Þg

sinhðj2H2Þ
for 0 6 y 6 H2 ð9bÞ
2.3. Velocity field

A combination of the electrokinetic forces and the driving pres-
sure gradients, gives rise to the steady state velocity distribution
within the microchannel, which can be obtained by solving the Na-
vier–Stokes equation, described as

qð u!� r!Þ u!¼ �r!pþ lr2 u!þ F
! ð10Þ

where F
!

is the net body force per unit volume that acts on the fluid.
We assume the flow to be fully developed, so that there is no veloc-
ity gradient along the axial (x) direction. Further, since the channel
is considered to be of large lateral extent as compared to its trans-
verse dimensions, velocity gradients out of the plane of Fig. 1 can
also be neglected. These considerations, coupled with the equation
of mass conservation (continuity equation), lead to the following
conditions, with F

!¼ qeð~E� ~r/Þ:

�dp
dx
þ l d2u

dy2 þ qeE ¼ 0 ð11Þ

It is important to mention here that the net body force is fundamen-
tally a combined effect of the potential distributions due to the in-
duced (EDL) and the applied electrical field. However, for a fully
developed flow considered in the present analytical study, only ax-
ial components of the velocity profiles are important (transverse
velocity component is identically equal to zero), which depend on
the body force along the axial direction only. Since the EDL induced
potential gradient acts along the transverse (y) direction, the only
component of the electrical field that influences the velocity profile
through an axially acting body force is due to the applied electric
field, resulting in the simplified form as given by Eq. (11).For the
flow configurations depicted in Fig. 1, Eq. (11) can be re-written
with the aid of Eq. (2) as

0 ¼ � dp
dx
þ l1

d2u1

dy2 � Ee1
d2/1

dy2 for � H1 6 y 6 0 ð11aÞ

0 ¼ � dp
dx
þ l2

d2u2

dy2 � Ee2
d2/2

dy2 for 0 6 y 6 H2 ð11bÞ

Integrating Eqs. (11a) and (11b), the velocity distributions can be
obtained in the following form:

u1 ¼
1
l1

dp
dx

� �
y2

2
þ Ee1

l1
/1 þ C3yþ C4 for � H1 6 y 6 0 ð12aÞ

and

u2 ¼
1
l2

dp
dx

� �
y2

2
þ Ee2

l2
/2 þ C 03yþ C04 for 0 6 y 6 H2 ð12bÞ

The integration constants can be evaluated by using the following
boundary conditions:

ðiÞ at y ¼ H2; u2 ¼ 0; ðiiÞ at y ¼ �H1u1 ¼ 0;

ðiiiÞ at y ¼ 0;u1 ¼ u2 and; ðivÞ at y ¼ 0; l1
du1

dy
¼ l2

du2

dy
ð13Þ

These lead to the following expressions for the integration
constants:

C3 ¼
1
l1

dp
dx

� �
H2

1
2 � 1

l2

dp
dx

� �
H2

2
2

h i
þ Ee1

l1
f1 � f2ð Þ � Ee2

l2
f4 � f3ð Þ

h i
� KH2

H1 þ l1
l2

H2

K ¼ Ee1

l2

f2j1 coshðj1H1Þ � f1j1

sinhðj1H1Þ
� Ee2

l2

f4j2 � f3j2 coshðj2H2Þ
sinhðj2H2Þ

C 03 ¼
l1

l2
C3 þ K
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C4 ¼ C3H1 �
Ee1

l1
f1 �

1
l1

dp
dx

� �
H2

1

2

C 04 ¼
Ee1f2

l1
� Ee2f3

l2
þ C4 ð13a-eÞ
2.4. Volume flow rates

The volume flow rates per unit width can be evaluated by inte-
grating the velocity profiles in the two fluid layers, as
Q 1 ¼
Z 0

�H1

u1dy

¼
3Ee1f2eðj1 H1Þ2 þ3Ee1f2�6Ee1f1eðj1 H1Þ �6Ee1f2eðj1 H1Þ �3C3H2

1 sinhðj1H1Þl1j1eðj1 H1Þ þ dp
dx H3

1 sinhðj1H1Þj1eðj1 H1Þ þ3Ee1f1eðj1 H1Þ2 þ3Ee1f1þ6C4H1 sinhðj1H1Þl1j1eðj1 H1Þ
� �

6sinhðj1H1Þl1j1eðj1 H1Þ

ð14aÞ

Q 2 ¼
Z H2

0
u2dy

¼
�6Ee2f3eðj2 H2Þ þ3Ee2f3þ3Ee2f3eðj2 H2Þ2 �6Ee2f4eðj2 H2Þ þ3C 03H2

2 sinhðj2H2Þl2j2eðj2 H2Þ þ dp
dx H3

2 sinhðj2H2Þj2eðj2 H2Þ þ3Ee2f4eðj2 H2Þ2 þ3Ee2f4þ6C 04H2 sinhðj2H2Þl2j2eðj2 H2Þ
� �

6sinhðj2H2Þl2j2eðj2 H2Þ

ð14bÞ
2.5. Heat transfer characteristics

Considering the derived velocity profiles, the energy conserva-
tion equation can be employed to obtain the expressions for tem-
perature profiles in the two fluid layers. In the two fluid layers, the
energy equation takes the following simplified forms:

q1Cp1
u1
@T1

@x

� �
¼ k1

d2T1

dy2 þ r1E2 for � H1 6 y 6 0 ð15aÞ

q2Cp2
u2
@T2

@x

� �
¼ k2

d2T2

dy2 þ r2E2 for 0 6 y 6 H2 ð15bÞ

For a constant wall heat flux boundary condition and with the
assumption of symmetric thermal boundary conditions at the two
walls, the thermally fully developed state implies

@T1

@x
¼ @T2

@x
¼ dTb

dx
¼ dTw

dx
¼ constant ð16Þ

Accordingly, one may integrate Eqs. (15a) and (15b), to yield

ðT1 � TwÞ ¼
y4

24l1

dp
dx
þ Ee1/1

l1j2
1

þ C3
y3

6
þ C4

y2

2

� � dTb
dx

a1
� r1E2y2

2k1

þ C5yþ C6 for � H1 6 y 6 0 ð17aÞ

ðT2 � TwÞ ¼
y4

24l2

dp
dx
þ Ee2/2

l2j2
2

þ C03
y3

6
þ C 04

y2

2

� � dTb
dx

a2
� r2E2y2

2k2

þ C 05yþ C06 for 0 6 y 6 H2 ð17bÞ

The integration constants can be evaluated by using the following
matching conditions:

ðiÞ at y ¼ �H1; T1 ¼ Tw ðiiÞ at y ¼ H2; T2 ¼ Tw at y

¼ 0; T1 ¼ T2 at y ¼ 0; k1
dT1

dy
¼ k2

dT2

dy
ð18Þ

It is important to note here that the parameter Tw is not a known
boundary parameter, since specification of the heat flux ensures
that the gradient of T (Neumann boundary condition) rather than
T itself may be prescribed at the walls. In that respect, expressions
18(i, ii) merely act as trivial conditions to be always satisfied at the
walls (irrespective of any arbitrary exact variations in Tw), but not as
a true boundary condition. The constants of integration, thus, can be
obtained as
C5 ¼
K dTb

dx �
r1E2H2

1
2k1
� r2E2H2

2
2k2

� �
þ Ee2f3

dTb
dx

l2j2
2a2
� Ee1f2

dTb
dx

l1j2
1a1

� �
� K1H2

H1 þ k1
k2

H2

ð19Þ
where

K ¼
dp
dx H4

1

24l1a1
�

dp
dx H4

2

24l2a2

 !
þ Ee1f1

l1j2
1a1
� Ee2f4

l2j2
2a2

� �

� C3H3
1

6a1
þ C 03H3

2

6a2

 !
þ C4H2

1

2a1
� C 04H2

2

2a2

 !

K1 ¼
Ek1e1

dTb
dx

k2l1a1j1

f2 coshðj1H1Þ � f1

sinhðj1H1Þ
�

Ee2
dTb
dx

l2a2j2

f4 � f3 coshðj2H2Þ
sinhðj2H2Þ

C 05 ¼
k1

k2
C5 þ K1

C6 ¼ �
dp
dx H4

1

24l1
þ Ee1f1

l1j2
1

� C3
H3

1

6
þ C4

H2
1

2

 !
dTb
dx

a1
þ r1E2H2

1

2k1
þ C5H1

C 06 ¼
Ee1f2

l1j2
1a1
� Ee2f3

l2j2
2a2

� �
dTb

dx
þ C6

ð19a-eÞ

Eqs.17a, 17b, and 19 together constitute the solution of the temper-
ature distribution in the two fluid layers.

2.6. Nusselt number calculation

Utilizing the velocity and temperature distributions, the bulk
mean flow temperature can be calculated as

ðTb � TwÞ ¼
R 0
�H1

q1Cp1
u1ðT1 � TwÞdyþ

R H2
0 q2Co2 u2ðT2 � TwÞdyR 0

�H1
q1Cp1

u1dyþ
R H2

0 q2Cp2
u2dy

Utilizing the interfacial conditions at the walls as

h1ðTw � TbÞ ¼ k1
dðTw � TÞ

dy

����
y¼�H1

ð21aÞ

h2ðTw � TbÞ ¼ �k2
dðTw � TÞ

dy

����
y¼H2

ð21bÞ

the Nusselt number can be obtained as

Nu1 ¼
2h1ðH1 þ H2Þ

k1
ð22aÞ
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Nu2 ¼
2h2ðH1 þ H2Þ

k2
ð22bÞ

Employing these relationships, a closed-form expression for the
Nusselt number may be derived. The expression is somewhat in-
volved, but may easily be obtained through the employment of a
suitable symbolic mathematics software. The temperature gradient
along the flow direction can be calculated by overall energy balance
in a control volume of unit width assuming q002 ¼ q001 ¼ q00 as

q1Cp1Q1 þ q2Cp2Q2

� 	dTb

dx
¼ 2q00 þ ðH1r1 þ H2r2ÞE2 ð23Þ
3. Results and discussions

The analytical model developed in this study is simulated by
using the following choices of thermo-physical properties, for the
sake of illustration: by l2

l1
¼ 20 q2

q1
¼ 1 k2

k1
¼ 0:1 and Cp2

Cp1
¼ 1. The

parameter j is evaluated at a reference temperature of 298 K.
These simulation studies are executed with reference to

the following non-dimensional parameters: P ¼
Ee1
l1

f1þf2
2

� 	
þEe2

l2

f3þf4
2

� 	
H2

1
2l1
þ

H2
2

2l2

� �
dp
dxð Þ

,

which is a measure of the relative significance of electroosmotic
force relative to the force on account of the driving pressure gradi-
ents, and S ¼ ð 2q00

r1E2H1þr2E2H2
Þ,which is measure of relative dominance

of the external heat transfer rate with respect to the rate of Joule
heating. The electrical conductivity ratio is varied for different sim-
ulations, so as to obtain a detailed qualitative and quantitative in-
sight regarding the effect of the same on the overall heat transfer
characteristics.

Fig. 2 depicts typical velocity profiles in the two fluid layers
with varying P, when the interfacial position is assumed to be lo-
cated exactly at midway between the two plates. The electrical
properties are taken in accordance with the following: e2

e1
¼ 0:5, f1 =

f2, f3 = f4 = 0.5f1, and r2
r1
¼ 0:1. Because of substantially lower vis-

cosity of the lower fluid layer as compared to the upper one, a sub-
stantially higher interfacial velocity gradient exists in the bottom
fluid, to satisfy the requirements of shear-stress continuity. It can
also be observed from Fig. 2 that higher values of P are associated
with higher magnitudes of the flow velocities. This can be attrib-
uted to the fact that for a given imposed pressure gradient, higher
values of P imply stronger electroosmotic body forces, giving rise
Fig. 2. Representative velocity profiles in the two fluid layers, for different values of
P, taking equal thicknesses of the two fluid layers, e2

e1
¼ 0:5, f1 = f2, f3 = f4 = 0.5f1, and

r2
r1
¼ 0:1.
to augmented flow strengths. On the other hand, negative values
of P imply opposing influences of the applied electric field and
the imposed pressure gradient. This is equivalent to the imposition
of an adverse pressure gradient on an electroosmotically driven
flow-feld, resulting in reduced strengths of flow (including possi-
bilities of backflow; for example see the curve corresponding to P =
-0.05 in Fig. 2).

Fig. 3 depicts typical temperature profiles in the two fluid layers
with varying S and with P = ±0.05, all other parameters remaining
the same as those being employed to obtain Fig. 2. The case with
S = �1represents an external cooling from the channel walls, so
that the fluid temperature remains greater than the wall tempera-
ture at all locations. When S = 0, the external heat fluxes at the
channel walls are effectively zero. Under these conditions, the
Joule heating effects in the lower fluid layer tend to increase its
temperatures to a perceptible extent. The upper layer being electri-
cally much less conductive, there is no substantial Joule heating
within the same. However, because of the transverse heat conduc-
tion effects, and aggravated by the fact that the heat generated in
the bottom layer cannot easily escape to the immediate surround-
ings by penetrating through the wall without any external aid; this
heat encounters the least resistance to be propagated upwards.
This gives rise to a locally decreasing vertical temperature gradient
Fig. 3. Representative temperature profiles in the two fluid layers, for different
values of S, for (a) P = 0.05, (b) P = �0.05. Other parameters are taken as mentioned
in the caption of Fig. 2.
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from the lower fluid layer to the upper fluid layer in the interfacial
region. The fluid temperature subsequently increases in the upper
layer, so as to match the thermal conditions prevailing at the upper
wall. It is also noteworthy that the upper layer, being thermally
less conductive than the lower one, is characterized with lower
interfacial temperature gradients, to maintain the continuity of
heat fluxes. For S = 1, heat is externally added to the fluid through
the channel walls, leading to a lower fluid temperature than the
wall temperature, at all locations. Stronger Joule heating effects,
as such can only shift the temperature characteristics more to-
wards the corresponding profile variation depicted for S = 0, with-
out altering the qualitative trend.

Fig. 4 depicts the variations in Nusselt numbers (Nu) for the two
layers, with variations in the parameters S and P, all other param-
eters remaining same as before. Interestingly, the case with S = �1
results in the highest possible Nu value for the lower fluid layer, as
compared to the other two values of S, whereas the contrastingly
reverse trend is observed for the upper fluid layer. This can be
attributed to the fact that the highest non-dimensional bottom-
wall temperature gradient and the lowest non-dimensional top-
wall temperature gradient is observed to occur for this value of
S. Interestingly, for S = 0, a lower difference between the bulk mean
temperature and the wall temperature compensates for a reduced
temperature gradient at the top wall, so that the highest value of
Nu in the upper fluid layer occurs for this case. For S = 1, on the
other hand, low values of the bottom-wall temperature gradients
are accompanied with higher extents of deviation of the bulk mean
Fig. 4. Variations of Nusselt numbers with S, for (a) positive values of P, (b) negative
values of P. Other parameters are taken as mentioned in the caption of Fig. 2.
temperature from the wall temperature. Consequently, for such
cases, the Nu value corresponding to the lower fluid layer attains
a minimum. Further, for both the fluid layers, the Nu value tends
to decrease with an increase in the magnitude of P (irrespective
of directionality), for lower ranges of magnitude of P, correspond-
ing to S = 0 and S = 1. This is because of the fact that an introduction
of electroosmotic effects tends to elevate the advective strengths
drastically, thereby attempting to nullify the wall temperature gra-
dients. Despite that, a dynamical equilibrium between axial advec-
tion and transverse thermal diffusion promptly sets in with further
increments in the magnitudes of P, rendering the Nu values to be
virtually insensitive with the later. For S = �1, the conflicting influ-
ences of Joule heating and wall cooling aid in achieving this
dynamical equilibrium at much lower relative strengths of the im-
posed electrical field, so that an apparent insensitivity of the values
of Nu with respect to the magnitudes of P can be observed for this
case. The Nu variations, being strongly dependent on the square of
the imposed electric field, exhibit much less sensitivities on the
variations in P as compared to the variations in the electric field
strength.

Fig. 5 depicts typical variations in the values of Nusselt number
for the case when the top layer is electrically non-conducting, as a
function of the relative thicknesses of the individual fluid layers for
P = ±0.5, all other parameters remaining unaltered. Interestingly,
the values of Nu are found to increase with the thickness of the
lower fluid layer for all cases, except for the value of Nu1 corre-
sponding to S = �1. For the later case, a thicker bottom layer trivi-
Fig. 5. Variations of Nusselt numbers S, as a function of interfacial position, taking
(a) P = 0.5, (b) P = �0.5. Other parameters are taken ase2

e1
= 0 f1 = f2, f3 = f4 = 0, r2

r1
¼ 0.
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ally implies a lower non-dimensional lower wall temperature gra-
dient and a higher non-dimensional upper wall temperature gradi-
ent. However, for S = 0 and S = 1, the decrements in wall
temperature gradients occur at a relatively slower rate as com-
pared to the corresponding reductions in the difference between
the bulk mean temperature and the wall temperature, with a thick-
ening of the bottom layer. As a consequence, the value of Nu1 in-
creases with enhancements in the thickness of the lower fluid
layer. For the electrically non-conducting upper fluid layer, decre-
ments in the layer thickness trivially imply increments in the non-
dimensional wall temperature gradients, in the absence of Joule
heating effects (because of the electrically non-conducting fluid).
Accordingly, the value of Nu2 increases monotonically with reduc-
tions in the thickness of this layer, for all cases.

4. Conclusions

A theoretical model has been established in this study for fully
developed convective heat transfer in two immiscible fluid layers
confined within parallel plate microchannels subjected to electro-
osmotic effects. The velocity and temperature distributions in the
two fluid layers have been obtained analytically, under constant
wall heat flux conditions. It has also been verified (not detailed
in the manuscript for brevity) that the analytical solutions agree
excellently with more involved full-scale numerical solution pre-
dictions. The upper fluid layer has been assumed to be weakly con-
ducting, as compared to the lower one. It has been revealed that
the highest value of the Nusselt number corresponding to the bot-
tom fluid layer occurs when the channel walls are cooled, whereas
the same in the top fluid layer occurs when the external heat fluxes
to the walls are effectively zero. The case with wall cooling is char-
acterized with a decrement in the Nusselt number corresponding
to the bottom fluid (electrically more conducting layer) with a
thickening of its lateral extent, whereas for all other cases the
Nusselt number increases with increments in the conducting layer
thickness.
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